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Effect of anisotropy on the instability of crack propagation
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Dynamics of fracture is investigated in an anisotropic two-dimensional Born-Maxwell model by numerical
simulations. From previous studies it is known that the isotropic model shows crack branching and velocity
oscillations of the propagating main crack above a critical velocity, similarly with experimental findings in
some brittle materials. Here we present studies in which anisotropy has been introduced to the model system.
Anisotropy is found to have significant effects on crack propagation and on the pattern it forms. In the case of
symmetric anisotropy~relative to the crack direction! we found changes in velocity oscillation and side
branching properties. In the case of asymmetric anisotropy two kinds of periodicities occur and strong anisot-
ropy causes different branch patterns to form at two sides of the main crack. In addition, the role of disorder
through distributed spring constants has been studied for both types of anisotropy. Finally a simple exactly
solvable model for investigating the initial stages of crack branching has been developed and analyzed.

PACS number~s!: 62.20.Mk, 83.50.Tq, 02.70.Ns
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I. INTRODUCTION

Fracture behavior of materials has been under active
search for a long time. Traditionally it has been treated
the material scienctists and engineers for its obvious tech
logical importance in various applications. In addition, fro
the physics point of view fracture and more specifica
crack dynamics is interesting also because of the rich var
of patterns that form and due to its connection to grow
models@1–3#.

A long-standing problem, which is still not fully under
stood, has been how to theoretically explain the experime
observations of crack propagation velocity in some bri
materials@4,5#. Ordinary continuum theory predicts that th
crack propagates with the sonic speed of the free surf
which is called Rayleigh wave speed. However, experime
show that the crack tip velocity, at least in amorphous bri
materials, is significantly less than the Rayleigh speed. S
the early 1950s there has been many attempts to explain
contradiction and it was Yoffe@6# who first predicted
through the continuum theoretical approach the crack pro
gation velocity to be 0.6 times the Rayleigh wave speed

In their experiments on glass and poly~methyl methacry-
late! ~PMMA! Fineberget al. @7# observed oscillations in the
crack tip velocity above a certain limiting speed, which
one-third of the theoretical limit. Later Sharonet al. @8#
pointed out that the correlation of crack branching with v
locity oscillations of the propagating main crack is respo
sible for the observed low crack velocity. Recent expe
ments of Boudetet al. @9# have shown that it is not necessa
that velocity oscillations and branching are directly co
nected, and that the phenomenon is more complex than
viously thought. Beside the experiments and theoret
works @10,11#, computer simulations@12–14# play an impor-
tant role for better understanding of the complexity and
stability occuring in brittle fracture.

*Present address: Tampere University of Technology, P.O.
692, FIN-33101, Tampere, Finland.
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In this study our main motivation has been to determ
how anisotropy and disorder influence the crack branch
instability, and to characterize and understand these effe
We are going to do this within the framework of a pheno
enological and parametrized dynamical model that inclu
elastic and plastic or viscous features as well as disorde
the bond level. In spite of these simplifying assumptions
believe that our model—though qualitative—is sufficient
describing some of the salient features real anisotropic
tems show.

II. MODEL

In our numerical simulations we have used a class
viscoelastic Born-Maxwell model with the triangular lattic
symmetry~Fig. 1!. The Born model@15,16# consists of mass
points and bonds that connect the nearest neighbor s
Each bond is described with two spring constantsa and b
representing the tensile and bending stiffnesses of the b
respectively. Although the Born model is not rotationa
invariant, fracture under mode-I loading can be describ
quite well, since the rotations of bonds in the system
small. In the model the potential energy of a bond betwe
the sitesi and j is defined in the following way:

Hi j 5
a

2
@~uW i2uW j !•dW i , j i#

21
b

2
@~uW i2uW j !•dW i , j'#2, ~1!

x
FIG. 1. Born-Maxwell model.
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where ui denotes the displacement of mass sitei from its
initial position, dW i , j' and dW i , j i are unit vectors connectin
sites i and j at t50. Since the constanta is related to the
Young modulus, andb to the shear modulus, the ratioa/b is
related to the Poisson ratio@13,17#. During the simulation
procedure the ratioa/b was kept always the same in th
anisotropic as well as in the disordered case. It is noted
the mass sites do not represent individual atoms but piece
material at a mesoscopic scale, ranging from nanomete
to millimeter scale.

Our model also bears viscoelastic behavior as a sim
extension of ideal elasticity. It describes materials in wh
stress decreases exponentially with time. Thus viscosity
the consequence that there exists dissipation in the bulk,
in addition there appears attenuation of~acoustic or shock!
waves. This has the effect of decreasing the role of finite s
in our simulation studies. The viscoelastic property is
cluded in the model in a manner introduced by Rautiain
et al. @18# and further discussed by Heino and Kaski@13#. It
is assumed that relative displacements of mass points ca
decomposed into elastic and viscous parts, which means
a bond between two nearest neighbor mass points consis
a simple Born spring and a Newton-type viscous elem
connected in a series with the spring. Denoting the ela
displacement of mass sitej from its initial position byuW e, j
one writes the equation of motion of the mass site in
following form:

mjuẄ j5 (
i Pnnj

$a@~uW e,i2uW e, j !•dW i , j i#dW i , j i

1b@~uW e,i2uW e, j !•dW i , j'#dW i , j'%, ~2!

uẆ e, j5uẆ j2
1

t
uW e, j . ~3!

Here ~2! is the equation of motion, where forces are caus
by elastic displacements, and~3! describes dissipation, whic
connects the elastic and total displacement vectors. With
propriate boundary and initial conditions they fully descri
the dynamics of the system. The details of the derivations
omitted here and interested readers can find them in
@13#. For computational simplicity the lattice constant a
masses of lattice sites were chosen to unity. The spring c
stants were chosen to bea5500 andb5250 unless other-
wise specified. In the simulations the set of equations~2! and
~3! have been solved numerically with the fourth ord
Runge-Kutta method by using sufficiently small integrati
time (Dt50.001), such that decreasing the value ofDt does
not affect the results any longer.

Initially we introduce a crack seed by cutting a sm
number of bonds~before applying loading att50) in the
center of the left side of the sample to control the direction
the crack line. The length of the notch in the horizontal
rection was chosen to be 10 lattice constants long. This
side and the parallel right side of the model system were
so that we used free boundary conditions. In the simulati
mode-I loading was applied, i.e., the loading is imposed
the system by moving the topmost row of mass sites in thy
direction and the bottom-most row of mass sites was k
fixed. The rate of loading was kept constantvs50.01 during
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the simulations except an initial period (0,t,Ti) in which
the topmost row was moved smoothly with the time dep
dent rate 2Tivs /p@12cos(t/Ti)(p/2)#, to minimize the gen-
eration of sound waves. A bond in the system under exte
loading was ruptured irreversibly and instantly when t
relative distance of mass points exceeded the chosen rup
threshold of 1% above the original equilibrium~unit! length
of the bond. In our simulations a typical system consisted
3003100 mass points. The relaxation parameter was cho
t525. For the strain rate used here this describes mode
dissipation@18#.

III. NUMERICAL SIMULATIONS

Results in an isotropic system@13# show that initially, the
crack tip advances straight with increasing velocity. Aft
reaching a critical value, daughter cracks emerge to b
sides of the main crack. As a result the mirror-type fractu
pattern changes to mist. In connection to branching there
large oscillations in the velocity of the propagating ma
crack. Both the main and daughter cracks appear straight
the mean velocity of the crack tip has a very slightly incre
ing trend.

For simplicity the ordered system is treated first. In suc
system anisotropy means that the material properties dep
on the direction they are measured in the model. In this c
anisotropy is introduced by choosing the spring constanta
and b different for different orientations. Two cases we
studied: symmetric and asymmetric. In the symmetric c
horizontal bonds have different elastic constants from
other bonds. In the asymmetric case bonds that form
angle of 60° with the horizontal direction have different ela
tic constants. The strength of the anisotropy is described
an anisotropy constantk, which is the ratio of the spring
constant in the special direction~horizontal in the symmetric
and 60° angle in the asymmetric case! with the spring con-
stant in the other directionk5aspec/a5bspec/b.

A. Symmetric anisotropy

In the case of symmetric anisotropy the special direct
is parallel to the main crack@Fig. 2~a!#. We have done the

FIG. 2. Special directions in the case of~a! symmetric and~b!
asymmetric anisotropy.
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simulations in the interval of the anisotropy constant 0
,k,2.2. The average speed of the main crack, the spa
periodicity of daughter cracks, and the frequency of veloc
oscillations were closely investigated.

Focusing first on the crack velocity we find that increa
ing the anisotropy constant means an increase in the cri
velocity and also in the average speed level of the perio
part of the velocity vs time plot. Since in this model th
speed of sound depends on the spring constants, and in
of the chosen special direction, parallel with the direction

the main crack, it isvsound5A4 (ak)21(bk)2, and the aver-
age crack velocity is related to it, one might expect the f
lowing square root dependence on the anisotropy,vcrack

;Ak. For comparison we have determined the crack vel
ity from the simulations as a function ofk and fitted it to the
form vcrack;kz. As shown in Fig. 3 we get for the expone
the valuez50.44, which is near the expected value of1

2 ,
though outside the error bars~about60.005) of the nonlin-
ear regression used in the fitting. This deviation may be
to subtle finite size effects.

In the simulations we have found that the main impact
anisotropy on the fracture pattern is that if we increase
anisotropy constantk, longer daughter cracks will appea
while the angle between the main crack and daughter cra
decreases, as can be seen in Fig. 4. This angle changes
37° for k50.825 to 17° fork52.0. Also in the case of large
anisotropy the period between branchings increases, whi
due to the fact that it takes time for the crack tip to acceler
and reach the critical velocity value for crack branching
occur. Our simulations also show that in the model
growth of daughter cracks is stopped if their vertical distan
from the main crack reaches a certain value. We have fo
this value to be independent of the value of anisotropy.
the other hand, it is seen that the apparent width of the f
ture pattern, i.e., the extent around the main crack, depe
on the strain rate and the strength of viscosity@13#. It has
been found that increasing the viscosity~i.e., descreasingt)
decreases the length of daughter cracks, while a faster l
ing rate increases their lengths. The shape of the daug
cracks are straight and no evidence of bending, i.e., curv

FIG. 3. Dependence of average crack tip velocity on anisotr
constant. The solid line represents the power-law fitted curve.
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of daughter cracks towards the main crack, was obser
This is most likely due to the underlaying lattice structure
our model.

For further analysis we have determined the spectrum
velocity oscillations by calculating the Fourier transform
the main crack velocity vs time. In Fig. 5 it seems that t
main peak of the spectrum corresponds to the first harmo
oscillation frequency but there appears also higher harm
ics, at least the second and third harmonic are clearly visi
Thus velocity oscillations are far from sinisoidal. In the fi
ure it is also evident that there is a significant amount
white background noise in the spectrum, which, on one ha
may be due to the discreteness of the crack tip movem
and, on the other hand, due to inaccuracies in the nume
algorithm. In order to improve this and facilitate noise redu
tion one would need larger system sizes because the mod
deterministic and there is no possibility to get an ensem
average. Especially when daughter cracks are short the s
trum becomes noisy and the half-width of peaks increase

y
FIG. 4. Fracture pattern in case of symmetric anisotropy. P

terns for system with~a! k50.825,~b! k51, and~c! k52.0, respec-
tively, are shown.

FIG. 5. Fourier spectrum of the crack tip velocity in the case
symmetric anisotropy withk51.3.
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The frequency of daughter crack formation can also
obtained by dividing the average distance between nea
crack branches with the average speed of the crack tip
should be noted that in this approach strictly speaking i
assumed that velocity oscillations in the propagating cr
tip are exactly matching with and caused by side branch
This ‘‘pseudo-Fourier-transform’’ leads to the same result
obtained with the proper Fourier transform. Thus our res
confirm with great accuracy that oscillations in crack prop
gation match exactly with the side branching process, sim
to the experiments@8#, and earlier simulations@13#.

In addition, a look at the graph of the oscillation fr
quency of daughter crack formation vs. amount of anisotro
~Fig. 6! tells that there is no simple relation between them
k,0.9 a drastic increase in frequency is observed andk
.1.5 a small decrease is seen. Around thek51 value there
is an interval where the oscillation frequency does
change much. It is interesting that although the average c
velocity is increasing, the horizontal distance between
nearest neighbor daughter cracks also increases so their
bined effect causes no significant change in oscillation
quency.

B. Asymmetric anisotropy

When the special direction isnot chosen parallel to thex
direction but to an angle~here chosen to be 60°), the refle
tion symmetry between the two sides of the main crack w
be broken. Then the most significant outcome of the sym
try breaking is the appearance of a side branching pat
with different periodicities on different sides of the ma
crack. If the anisotropy constantk is set greater than unity
and the direction of loading is chosen in the way shown
Fig. 2~b!, a denser side crack structure with short daugh
cracks emerges on the lower side of the main crack. H
ever, in this case there appear more fluctuations in the p
odicity of spatial branching. On the upper side of the m
crack the spatial periodicity of crack branching increa
only slightly whenk increases. Figure 7 shows a typical r
sult.

FIG. 6. First harmonic frequency of the velocity oscillation
anisotropy. Error bars correspond to the half-width of peaks.
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It is interesting to investigate in slightly more detail wh
happens when the anisotropy constant is varied around
isotropic conditionk51, in which case the spatial branchin
periodicity on both sides of the main crack are the sam
When the anisotropy constant is raised tok52, the above
mentioned denser and shorter side crack structure app
Then lettingk approach the isotropic limit (k→1), the spa-
tial periodicities of daughter cracks on both sides of the m
crack tend to be the same. For example, by settingk51.1 it
seems that whenever a crack is formed on the upper sid
the main crack there is one formed on the lower side as w
In addition to that daughter cracks are formed time to ti
on the lower side of the main crack between the regu
branches. Ask→1 less and less such irregular daugh
branches are formed until finally only the regular patte
remains. Thus for small anisotropy daughter cracks app
preferably in pairs and in that way shed out rapidly ex
stress from the crack tip. If the anisotropy constant is se
be less than unity the role of different sides of the main cra
changes. In contrast to the symmetric case there is not
considerable dependence of the average velocity of the m
crack on the anisotropy constantk.

The spectrum of crack tip velocity oscillations shows th
there exists a dominant frequency as a result of daug
crack generation from that side of the propagating cra
where the daughter cracks are longer. It is also quite rem
able that the spectrum peak due daughter crack oscillat
of the other side is much less in height, vanishing nea
within the noise level. Thus in the instability of crack prop
gation longer side branches on one side of the main cr
play the major role while the shorter side branches of
other side of the crack play only a minor role.

C. Disordered systems

Disorder has been introduced in the model by random
setting the values of the spring constants of the bonds w

FIG. 7. Fracture pattern in case of asymmetric anisotropy:~a!
k51.5, ~b! k51.3, ~c! k51.1, and~d! k50.8, respectively.
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keeping thea/b ratio constant. This kind of disorder aims
represent density fluctuations that might be the reason
local strength variation in some composite materials like
per @17#. Thea values were selected according to a unifo
distribution from the (a02aw ,a01aw) interval. Herea0 is
the value that has already been used for the ordered sys
aw is varied andd5aw /a0 is the quantity that describes th
strength of disorder.

The results of such disorder are as expected. Increa
the disorder in the system makes the daughter cracks l
their regularity in length, angle, and periodicity. We ha
also seen that branch structure with longer daughter cra
remains more stable than the shorter branch structure. Ifd is
greater than roughly 0.3 it is more likely that daughter cra
coalesce and instead of individual daughter cracks a ha
fracture pattern is observed. It should be underlined that
locity oscillations are far more sensitive to disorder than p
tern formation, namely a small value ofd'0.2 makes the
velocity oscillations of the main crack rather noisy. Then it
very difficult to obtain useful information from it. When th
amount of disorder is large, i.e.,d.0.5, voids away from the
neighborhood of the crack tip are generated, but the m
crack keeps its directional straightness without any sign
cant deviations. Usually the interplay between disorder
anisotropy is interesting@as e.g., in anisotropic diffusion lim
ited aggregation~DLA ! models#, and here we found that th
anisotropic properties of the fracture pattern are still obse
able at quite a high value of disorder, up tod50.4.

IV. ANALYSIS OF CRACK PATTERN FORMATION

There is a simple picture that explains how the fract
pattern might change if the system is anisotropic. Let us fi
assume that anisotropy has the effect that it only changes
velocity of crack propagation. Thus, in case of symme
anisotropy one would expect that besides this increase in
velocity of the main crack, daughter cracks should elong
in the horizontalx direction and change their angle. On th
other hand, the time that is needed for the daughter crack
reach their endpoint remains the same because that is
tated by the vertical velocity component of the daugh
crack away from the main crack. Assuming that the verti
length of branches is constant, this is true near the isotro
case. If we apply this picture to the asymmetric anisotro
we expect that on one side of the main crack daughters
moving faster away from the main crack and have a gre

FIG. 8. A reduced model for calculating the critical cra
boundary velocity.
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angle creating a densely branched pattern. The other sid
less affected by the change because there the branches
roughly perpendicularly to the direction of anisotropy.

Pattern formation and velocity oscillations of fracture a
typical examples where nonlocal effects are the keys to
derstanding the whole phenomenon. However, in latt
models local crack tip dynamics can be understood in te
of a ‘‘minimal model’’ of an already strained triangula
beam-lattice system@19,14#. This simple model can at leas
qualitatively describe the time dependence of the crack
locity in the case of the straightly propagating crack. Ho
ever, problems arise when branching occurs. The nonlo
nature of crack propagation is that daughter cracks affect
propagation of the main crack by their screening effect, i
side branches cause a decrease in the stress around the
tip. In this sense there seems to be a connection between
model and Laplacian growth models for diffusion limite
aggregation~DLA ! and viscous fingering@1#. In spite of the
fact that Laplacian models are rotationally invariant and o
model is not, the connection between them is indicated
some similarity of the governing equations and of movi
boundaries, the latter including the screening effect.
more details about the relation between fracture and Lap
ian growth we refer to the book edited by Herrmann a
Roux @1#.

In a previous publication of this model@13# it was pro-
posed that side branching occurs if the crack boundary
locity exceeds a certain threshold velocity. By the cra
boundary velocity we mean the vertical velocity of ma
points at the crack tip, and it is usually considered to
proportional to the velocity of the main crack. In order
investigate analytically the effect of anisotropy on cra
branching instability we studied a reduced model. It is ve
similar to the one used in@13#, however slight modifications
were done and Fig. 8 describes the main features of
model. The mass points labeled with 4, 5, 6, and 7 are fix
whereas 2 and 3 are moving upwards with definite velocit
The velocity of site 2 is the boundary velocityvb itself and

FIG. 9. Branching instability in the isotropic (k51) system. In
case ofvb50.2 andvb50.3 ~solid and dashed lines! the 1-6 bond
breaks first. Ifvb50.4 ~long-dashed line! a daughter crack starts t
grow. The horizontal line represents the breaking threshold.
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site 3 moves with somewhat slower velocityavb , where the
parametera was set to 0.75. The motion of mass point 1
calculated. Viscosity effects are omitted here because of t
large time scale compared to the characteristic time of
harmonic springs. Thus nearest neighbor mass points of
model are connected simply with Born springs. With the
conditions the equation of motion and its solution for ma
point 1 will scale with the boundary velocityvb . The break-
ing threshold of 1% is used as in the original simulati
model. If the velocity of the crack boundary is small th
crack propagates in a horizontal direction with a zig-zag m
tion via the 1-6 and then 6-5 bonds. Above a certain limiti
velocity the 1-3 bond breaks first and branching emerg
Figure 9 shows the strain values of the bonds 1-6 and 1-
the isotropic system.

With this reduced model we have studied both cases
anisotropy, symmetric and asymmetric. In the symme
case we find that the larger the anisotropy constant is
larger the critical velocity for crack branching is~Fig. 10!, as
it was observed in the simulations. In the case of asymme
anisotropy the threshold velocities for daughter cracks
different sides of the main crack are found to be differe
which is also in accordance with the simulations.

In conclusion, we can say that in our model the followi
scenario happens. At the beginning of loading the stra
crack line moves as it is determined by the local stress. W
it reaches the threshold velocity daughter cracks emerge.
ter propagating the distance of a few lattice constants the
a velocity decrease in the main crack due to daughter c
screening. By the time the daughter cracks are far from
main crack the screening becomes less effective and
main crack can accelerate to the velocity limit where bran
ing occurs again. Thus oscillations in the velocity of t
main crack are seen. As for oscillation frequency and re
larity, this picture changes due to anisotropy and disorde
the system.

V. SUMMARY

We have studied the role of anisotropy and disorder in
viscoelastic model, with Born springs and Maxwell-type v
.
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cous dashpots. Even though our results are qualitative
restricted to a certain lattice structure it clearly shows
effects of anisotropy on fracture. In the case of symme
anisotropy the average velocity of the main crack, the len
of the cracks and their periodicity changes as a function
the anisotropy constant. The most interesting part of our
sults is that in the case of asymmetric anisotropy there ex
two quantitatively different periodic structures in the fractu
pattern. When disorder in terms of the spring constan
implemented to the model, fluctuations in the crack tip v
locity and in the branch structure are seen, but the m
effects of anisotropy remain unchanged.
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FIG. 10. Effect of symmetric anisotropy on crack branchin
Increasing the anisotropy constant increases the critical crack ve
ity for branching. For the crack boundary velocity shown, bran
ing occurs fork51, but does not occur fork51.5.
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