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Effect of anisotropy on the instability of crack propagation
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Dynamics of fracture is investigated in an anisotropic two-dimensional Born-Maxwell model by numerical
simulations. From previous studies it is known that the isotropic model shows crack branching and velocity
oscillations of the propagating main crack above a critical velocity, similarly with experimental findings in
some brittle materials. Here we present studies in which anisotropy has been introduced to the model system.
Anisotropy is found to have significant effects on crack propagation and on the pattern it forms. In the case of
symmetric anisotropyrelative to the crack directignwe found changes in velocity oscillation and side
branching properties. In the case of asymmetric anisotropy two kinds of periodicities occur and strong anisot-
ropy causes different branch patterns to form at two sides of the main crack. In addition, the role of disorder
through distributed spring constants has been studied for both types of anisotropy. Finally a simple exactly
solvable model for investigating the initial stages of crack branching has been developed and analyzed.

PACS numbses): 62.20.Mk, 83.50.Tq, 02.70.Ns

I. INTRODUCTION In this study our main motivation has been to determine
how anisotropy and disorder influence the crack branching

Fracture behavior of materials has been under active re- . )
search for a long time. Traditionally it has been treated b nstability, and to characterize and understand these effects.

the material scienctists and engineers for its obvious techno- e are going to do this \.’V'thm the frqmework of a phenom—

logical importance in various applications. In addition, from €nclogical and parametrized dynamical model that includes

the physics point of view fracture and more specifically €/astic and plastic or viscous features as well as disorder at

crack dynamics is interesting also because of the rich variet{€ bond level. In spite of these simplifying assumptions we

of patterns that form and due to its connection to growthPelieve that our model—though qualitative—is sufficient in

models[1-3]. describing some of the salient features real anisotropic sys-
A long-standing problem, which is still not fully under- tems show.

stood, has been how to theoretically explain the experimental

observations of crack propagation velocity in some brittle Il. MODEL

materials[4,5]. Ordinary continuum theory predicts that the In our numerical simulations we have used a classical

crack propagates with the sonic speed of the free surface . ; : )

which is called Rayleigh wave speed. However, eXperimem\sliscoeIas;'uc Born-Maxwell model with the triangular lattice

show that the crack tip velocity, at least in amorphous brittlesymmetry(':'g' 1). The Born mode[15,1¢) consists of mass

. o . . points and bonds that connect the nearest neighbor sites.
materials, is significantly less than the Rayleigh speed. SmcEs . . : :
the early 1950s there has been many attempts to explain th ach bond is described with two spring constantand 8

contradiction and it was Yoffe[6] who first predicted represe_nting the tensile and bending stiff_nesses of t_he bond,
through the continuum theoretical approach the crack propar_espgctwely. Although the Bom modgl IS not rotatlonglly
gation velocity to be 0.6 times the Rayleigh wave speed. Invariant, frapture under ”.‘Ode" loading can be described
In their experiments on glass and pehethyl methacry- quite well, since the rotations of bonds in the system are
late) (PMMA) Fineberget al.[7] observed oscillations in the sr:nalll. In. thedr'npdglft'hedpptepltlafl tﬁner_gy of a.bond between
crack tip velocity above a certain limiting speed, which ist e sites and] Is defined in the following way:
one-third of the theoretical limit. Later Sharaet al. [8] L B . . .
pointed out that the correlation of crack branching with ve- Hij=7 (ui—uj)-di,j”]2+ E[(ui—uj)~di'jl]2, @
locity oscillations of the propagating main crack is respon-
sible for the observed low crack velocity. Recent experi-
ments of Boudegt al.[9] have shown that it is not necessary
that velocity oscillations and branching are directly con-
nected, and that the phenomenon is more complex than pre-
viously thought. Beside the experiments and theoretical
works[10,11], computer simulationgl2—14 play an impor-
tant role for better understanding of the complexity and in-
stability occuring in brittle fracture.

—»o
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o---o
Broken bond

(i) — WM (j)

*Present address: Tampere University of Technology, P.O. Box
692, FIN-33101, Tampere, Finland. FIG. 1. Born-Maxwell model.
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where u; denotes the displacement of mass siteom its

initial position, d; ;, and d;;; are unit vectors connecting
sitesi andj att=0. Since the constant is related to the
Young modulus, an@ to the shear modulus, the ratidg is
related to the Poisson ratid3,17]. During the simulation
procedure the ratiav/8 was kept always the same in the
anisotropic as well as in the disordered case. It is noted that
the mass sites do not represent individual atoms but pieces of
material at a mesoscopic scale, ranging from nanometer up
to millimeter scale.

Our model also bears viscoelastic behavior as a simple
extension of ideal elasticity. It describes materials in which o o
stress decreases exponentially with time. Thus viscosity has * * X
the consequence that there exists dissipation in the bulk, and o,
in addition there appears attenuation(atoustic or shogk k= o
waves. This has the effect of decreasing the role of finite size 0. o
in our simulation studies. The viscoelastic property is in-
cluded in the model in a manner introduced by Rautiainen FIG. 2. Special directions in the case (@ symmetric andb)
et al.[18] and further discussed by Heino and Kagkg]. It ~ asymmetric anisotropy.
is assumed that relative displacements of mass points can be ) o ] ) )
decomposed into elastic and viscous parts, which means thiité Simulations except an initial period €@ <T;) in which
a bond between two nearest neighbor mass points consists ¥ topmost row was moved smoothly with the time depen-
a simple Born spring and a Newton-type viscous elemenflent rate Zjvs/a[1—cos@/T)(w/2)], to minimize the gen-
connected in a series with the spring. Denoting the elasti€"ation of sound waves. A bond in the system under external
loading was ruptured irreversibly and instantly when the

relative distance of mass points exceeded the chosen rupture

Shreshold of 1% above the original equilibriuqnit) length

of the bond. In our simulations a typical system consisted of

- . . . 300x 100 mass points. The relaxation parameter was chosen

muj= > {a[(Ug;i—Ue;)-d;;1di T=25. For the strain rate used here this describes moderate
tenn, dissipation[18].

displacement of mass sijefrom its initial position byﬁe,j
one writes the equation of motion of the mass site in th
following form:

+ B (Ug,i—Uej) a1 j. }, ¥
Al(Ue,i~Uey)- oy Jdiji ) Iil. NUMERICAL SIMULATIONS

" 1.

Ug = Jj = U (3) Results in an isotropic systef3] show that initially, the

crack tip advances straight with increasing velocity. After
eaching a critical value, daughter cracks emerge to both
ides of the main crack. As a result the mirror-type fracture
attern changes to mist. In connection to branching there are
arge oscillations in the velocity of the propagating main
crack. Both the main and daughter cracks appear straight and
e mean velocity of the crack tip has a very slightly increas-

Here(2) is the equation of motion, where forces are cause
by elastic displacements, af®) describes dissipation, which
connects the elastic and total displacement vectors. With a|
propriate boundary and initial conditions they fully describe
the dynamics of the system. The details of the derivations ar
omitted here and interested readers can find them in Re ng trend.

[13]. For computational simplicity the lattice constant and "¢ simpjicity the ordered system is treated first. In such a
masses of lattice sites were chosen to unity. The spring Coré'ystem anisotropy means that the material properties depend
stants were chosen to he=500 andS=250 unless other- i, yhe girection they are measured in the model. In this case
wise specified. In the 5|mulat|or_13 the set of equati@snd anisotropy is introduced by choosing the spring constants

(3) have been solved nur_nencally .W'th the fo_urth Or(_jerand B different for different orientations. Two cases were
Runge—Kutta method by using sufflc;lently small Integration gy, gieg: symmetric and asymmetric. In the symmetric case
time (At=0.001), such that decreasing the valuelofdoes horizontal bonds have different elastic constants from the

not affect the results any longer. _ other bonds. In the asymmetric case bonds that form the
Initially we introduce a crapk seed_ by cuttlng_ a small angle of 60° with the horizontal direction have different elas-
number of bonds('before applying loading at=0) in the ic constants. The strength of the anisotropy is described by
center of th_e left side of the sample to co_ntrol the q”ectlon Sfan anisotropy constark, which is the ratio of the spring
the crack line. The length of the notch in the horizontal d"fconstant in the special directighorizontal in the symmetric
rection was chosen to be 10 lattice constants long. This le Lnd 60° angle in the asymmetric caseth the spring con-
side and the parallel right side of the model system were fregtant in the other directiok= a .. @= Beped B
so that we used free boundary conditions. In the simulations Spec spec i
mode-| loading was applied, i.e., the loading is imposed to
the system by moving the topmost row of mass sites irythe
direction and the bottom-most row of mass sites was kept In the case of symmetric anisotropy the special direction
fixed. The rate of loading was kept constagt0.01 during is parallel to the main crackFig. 2@]. We have done the

A. Symmetric anisotropy
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FIG. 4. Fracture pattern in case of symmetric anisotropy. Pat-
FIG. 3. Dependence of average crack tip velocity on anisotropyierns for system witlta) k=0.825,(b) k=1, and(c) k= 2.0, respec-
constant. The solid line represents the power-law fitted curve.  tively, are shown.

simulations in the interval of the anisotropy constant 0.54f daughter cracks towards the main crack, was observed.
<k<2.2. The average speed of the main crack, the spatiathis is most likely due to the underlaying lattice structure of
periodicity of daughter cracks, and the frequency of velocitygyr model.

oscillations were closely investigated. . _ For further analysis we have determined the spectrum of
~ Focusing first on the crack velocity we find that increas-ye|ocity oscillations by calculating the Fourier transform of
ing the anisotropy constant means an increase in the cfitiCghe main crack velocity vs time. In Fig. 5 it seems that the
velocity and also in the average speed level of the periodignain peak of the spectrum corresponds to the first harmonic
part of the velocity vs time plot. Since in this model the ggcillation frequency but there appears also higher harmon-
speed of sound depends on the spring constants, and in cggg, at least the second and third harmonic are clearly visible.
of the chosen special direction, parallel with the direction oftys velocity oscillations are far from sinisoidal. In the fig-
the main crack, it i9sound 4\/(ak)ZJr(,Bk)z, and the aver- ure it is also evident that there is a significant amount of
age crack velocity is related to it, one might expect the fol-white background noise in the spectrum, which, on one hand,
lowing square root dependence on the anisotrapy,« Mmay be due to the discreteness of the crack tip movement
~ k. For comparison we have determined the crack velocand, on the other hand, due to inaccuracies in the numerical
ity from the simulations as a function &fand fitted it to the  algorithm. In order to improve this and facilitate noise reduc-
form v e~ k% As shown in Fig. 3 we get for the exponent tion one would need larger system sizes because the model is
the valuez=0.44, which is near the expected value nf ~ deterministic and there is no possibility to get an ensemble
though outside the error bafabout+0.005) of the nonlin- average. Especially when daughter cracks are short the spec-
ear regression used in the fitting. This deviation may be dugrum becomes noisy and the half-width of peaks increases.
to subtle finite size effects.

In the simulations we have found that the main impact of _ T T T T T T T
anisotropy on the fracture pattern is that if we increase the@
anisotropy constank, longer daughter cracks will appear £
while the angle between the main crack and daughter crack 3
decreases, as can be seen in Fig. 4. This angle changes frof
37° fork=0.825to 17° folk=2.0. Also in the case of larger g 0.8 -
anisotropy the period between branchings increases, which i&
due to the fact that it takes time for the crack tip to accelerate@
and reach the critical velocity value for crack branching to .2
occur. Our simulations also show that in the model the_‘:iI
growth of daughter cracks is stopped if their vertical distance § 0.4 | -
from the main crack reaches a certain value. We have founc®
this value to be independent of the value of anisotropy. On®
the other hand, it is seen that the apparent width of the frac-“;’
ture pattern, i.e., the extent around the main crack, depend?
on the strain rate and the strength of visco$iti3]. It has 0.0 L L L L L L

. . . ) . 00 10 20 30 40 50 60 70 80
been found that increasing the viscoditg., descreasing) Frequency (1/unit time)
decreases the length of daughter cracks, while a faster loaa-
ing rate increases their lengths. The shape of the daughter FIG. 5. Fourier spectrum of the crack tip velocity in the case of
cracks are straight and no evidence of bending, i.e., curvingymmetric anisotropy wittik=1.3.
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FIG. 6. First harmonic frequency of the velocity oscillation vs
anisotropy. Error bars correspond to the half-width of peaks.

The frequency of daughter crack formation can also be FIG. 7. Fracture pattern in case of asymmetric anisotréay:
obtained by dividing the average distance between neare&t 1-5: (b) k=1.3,(c) k=1.1, and(d) k=0.8, respectively.
crack branches with the average speed of the crack tip. It
should be noted that in this approach strictly speaking it is It is interesting to investigate in slightly more detail what
assumed that velocity oscillations in the propagating crackappens when the anisotropy constant is varied around the
tip are exactly matching with and caused by side branchingsotropic conditiork=1, in which case the spatial branching
This “pseudo-Fourier-transform” leads to the same result ageriodicity on both sides of the main crack are the same.
obtained with the proper Fourier transform. Thus our resultd8Vhen the anisotropy constant is raisedkte 2, the above
confirm with great accuracy that oscillations in crack propa-mentioned denser and shorter side crack structure appears.
gation match exactly with the side branching process, similafhen lettingk approach the isotropic limitk— 1), the spa-
to the experiment§8], and earlier simulationgL3]. tial periodicities of daughter cracks on both sides of the main
In addition, a look at the graph of the oscillation fre- crack tend to be the same. For example, by setind..1 it
quency of daughter crack formation vs. amount of anisotropyseems that whenever a crack is formed on the upper side of
(Fig. 6) tells that there is no simple relation between them. Ifthe main crack there is one formed on the lower side as well.
k<<0.9 a drastic increase in frequency is observed ard if In addition to that daughter cracks are formed time to time
>1.5 a small decrease is seen. Around kkel value there on the lower side of the main crack between the regular
is an interval where the oscillation frequency does notbranches. Ask—1 less and less such irregular daughter
change much. It is interesting that although the average cradiranches are formed until finally only the regular pattern
velocity is increasing, the horizontal distance between theemains. Thus for small anisotropy daughter cracks appear
nearest neighbor daughter cracks also increases so their copreferably in pairs and in that way shed out rapidly extra
bined effect causes no significant change in oscillation frestress from the crack tip. If the anisotropy constant is set to
qguency. be less than unity the role of different sides of the main crack
changes. In contrast to the symmetric case there is not any
B. Asymmetric anisotropy considerable dependence of the average velocity of the main
crack on the anisotropy constant
The spectrum of crack tip velocity oscillations shows that
there exists a dominant frequency as a result of daughter

When the special direction isot chosen parallel to thg
direction but to an angléhere chosen to be 60°), the reflec-
tion symmetry between the two sides of the main crack will

with kdn;;etrﬁnt p_er|ct>d|C|t|es or; ?{Lf_fererlt S|dets otfhthe m?m of the other side is much less in height, vanishing nearly
Cr%lcth di e ?'nlso ]ECleydc;ons_ a h'S se .grt;.'r? er anhum Y within the noise level. Thus in the instability of crack propa-
and the direction ot joading 1S chosen In the way Shown 1Ny , longer side branches on one side of the main crack

Fig. 2Ab), a denser side crack structure with _short daughte lay the major role while the shorter side branches of the
cracks_ emerges on the lower side of the main crgck. HOWbther side of the crack play only a minor role.
ever, in this case there appear more fluctuations in the peri-
odicity of spatial branching. On the upper side of the main

crack the spatial periodicity of crack branching increases
only slightly whenk increases. Figure 7 shows a typical re- Disorder has been introduced in the model by randomly

sult. setting the values of the spring constants of the bonds while

C. Disordered systems
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keeping then/ B ratio constant. This kind of disorder aims to 0.00 0.02 0.04 0.0 0.08 0.10
represent density fluctuations that might be the reason fo Time (arbitrary units)

local strength variation in some composite materials like pa-

per[17]. The a values were selected according to a uniform  FIG. 9. Branching instability in the isotropik¢ 1) system. In
distribution from the fo— a, , g+ ay,) interval. Hereayg is case ofgb=0.2 andv,=0.3 (solid anq dashed lingshe 1-6 bond
the value that has already been used for the ordered systeff€aks first. lfv,=0.4 (long-dashed linga daughter crack starts to
a,, is varied andi= a,,/ aq is the quantity that describes the grow. The horizontal line represents the breaking threshold.
strength of disorder.

The results of such disorder are as expected. Increasir@'9le creating a densely branched pattern. The other side is
the disorder in the system makes the daughter cracks lood@ss affected by the change because there the branches grow
their regularity in length, angle, and periodicity. We havefoughly perpendicularly to the direction of anisotropy.
also seen that branch structure with longer daughter cracks Pattern formation and velocity oscillations of fracture are
remains more stable than the shorter branch structutkisif ~ typical examples where nonlocal effects are the keys to un-
greater than roughly 0.3 it is more likely that daughter crackgierstanding the whole phenomenon. However, in lattice
coalesce and instead of individual daughter cracks a hacki@odels local crack tip dynamics can be understood in terms
fracture pattern is observed. It should be underlined that ve@f @ “minimal model” of an already strained triangular
locity oscillations are far more sensitive to disorder than patPeam-lattice systerfil9,14. This simple model can at least
tern formation, namely a small value di~0.2 makes the quqhta_ltlvely describe the tim_e dependence. of the crack ve-
velocity oscillations of the main crack rather noisy. Then it islocity in the case of the straightly propagating crack. How-
very difficult to obtain useful information from it. When the €Ver, problems arise when branching occurs. The nonlocal
amount of disorder is large, i.e>0.5, voids away from the nature of_crack propagatlon is that da_ughter cr_acks aﬁecF the
neighborhood of the crack tip are generated, but the maip_ropagatlon of the main crack by.thelr screening effect, i.e.,
crack keeps its directional straightness without any signifiSide branches cause a decrease in the stress around the crack
cant deviations. Usually the interplay between disorder andP- I this sense there seems to be a connection between this
anisotropy is interestinfas e.g., in anisotropic diffusion lim- Model and Laplacian growth models for diffusion limited
ited aggregatiofDLA) modeld, and here we found that the aggregationDLA) and viscous fingerin@l]. In spite of the

anisotropic properties of the fracture pattern are still observiact that Laplacian models are rotationally invariant and our
able at quite a high value of disorder, upde:0.4. model is not, the connection between them is indicated by

some similarity of the governing equations and of moving
boundaries, the latter including the screening effect. For
more details about the relation between fracture and Laplac-
There is a simple picture that explains how the fracturdan growth we refer to the book edited by Herrmann and
pattern might change if the system is anisotropic. Let us firsRoux[1].
assume that anisotropy has the effect that it only changes the In a previous publication of this modgl3] it was pro-
velocity of crack propagation. Thus, in case of symmetricposed that side branching occurs if the crack boundary ve-
anisotropy one would expect that besides this increase in thecity exceeds a certain threshold velocity. By the crack
velocity of the main crack, daughter cracks should elongatéoundary velocity we mean the vertical velocity of mass
in the horizontalx direction and change their angle. On the points at the crack tip, and it is usually considered to be
other hand, the time that is needed for the daughter cracks faroportional to the velocity of the main crack. In order to
reach their endpoint remains the same because that is digivestigate analytically the effect of anisotropy on crack
tated by the vertical velocity component of the daughterranching instability we studied a reduced model. It is very
crack away from the main crack. Assuming that the verticakimilar to the one used i3], however slight modifications
length of branches is constant, this is true near the isotropiwere done and Fig. 8 describes the main features of this
case. If we apply this picture to the asymmetric anisotropymodel. The mass points labeled with 4, 5, 6, and 7 are fixed,
we expect that on one side of the main crack daughters anghereas 2 and 3 are moving upwards with definite velocities.
moving faster away from the main crack and have a greatefhe velocity of site 2 is the boundary velocity, itself and

IV. ANALYSIS OF CRACK PATTERN FORMATION



PRE 61 EFFECT OF ANISOTROPY ON THE INSTABILITY @ . . . 3383

site 3 moves with somewhat slower veloc#ty,,, where the 0.015 — T T T
parametem was set to 0.75. The motion of mass point 1 is = V},=0.35

calculated. Viscosity effects are omitted here because of theig

large time scale compared to the characteristic time of the
harmonic springs. Thus nearest neighbor mass points of thif§
model are connected simply with Born springs. With these> 0.010
conditions the equation of motion and its solution for mass 28

point 1 will scale with the boundary velocity, . The break-
ing threshold of 1% is used as in the original simulation
model. If the velocity of the crack boundary is small the
crack propagates in a horizontal direction with a zig-zag mo-:
tion via the 1-6 and then 6-5 bonds. Above a certain limiting
velocity the 1-3 bond breaks first and branching emerges g
Figure 9 shows the strain values of the bonds 1-6 and 1-3 irx

the isotropic system.

With this reduced model we have studied both cases ol  0.000 L L L
anisotropy, symmetric and asymmetric. In the symmetric 0.00 0.02 0.04 0.06 0.08 010
case we find that the larger the anisotropy constant is the Time (arbitrary units)
e 20 2 i, 1. 10. et of syt arsotopy on e ranch,

. e Fncreasmg the anisotropy constant increases the critical crack veloc-
a.mSOtrOpy. the thrEShOId.VeIOCItles for daughter Cr‘f’leS Ofty for branching. For the crack boundary velocity shown, branch-
d|ff_erer_1t S|des_ of the main cra_lck are f_ound _to be dlfferent,ing oceurs fork=1, but does not occur fok=1.5.
which is also in accordance with the simulations.

In conclusion, we can say that in our model the following
scenario happens. At the beginning of loading the straigh

distances of s

0.005

tive

gous dashpots. Even though our results are qualitative and

crack line moves as it is determined by the local stress. Wheh?ft“aedf to a certain Iatftlce structur?‘ i clearlyf shows the
it reaches the threshold velocity daughter cracks emerge. A gcts 0 a2|sotropy on rlacFure.f IE the case Ok S)r/lmrlnetrlc;
ter propagating the distance of a few lattice constants there %Pliotropytk € a\(/jerﬁg_e ve ch}’ oft E main crac 'ft € _engtf
a velocity decrease in the main crack due to daughter crac the cracks and their periodicity changes as a function o

screening. By the time the daughter cracks are far from thé € anisotropy constant. The most interesting part of our re-

main crack the screening becomes less effective and ﬂ}séults is that in the case of asymmetric anisotropy there exists

main crack can accelerate to the velocity limit where branch WO quantitatively different periodic structures in the fracture

ing occurs again. Thus oscillations in the velocity of theﬁﬁttleer:]ér\]/gggqooiﬁgrgg d'er} tf?lzgtsja%t):geins?r:g]%r;gﬂs'utian\tel?
main crack are seen. As for oscillation frequency and regux P ' P

larity, this picture changes due to anisotropy and disorder "ﬁ‘?ggtsaggalr?istoht?o brarlcgaf;raﬁ?ggna;ed seen, but the main
the system. py gea.
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